Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring
نویسندگان
چکیده
PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300 °C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS). The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm-424 nm and 426 nm-464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.
منابع مشابه
Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide
A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...
متن کاملDetermination of trace amounts of Ag (I) in waste water samples by a novel potentiometric sensor based on perphenazine as an ionophore
Background and Objective: Silver is a toxic heavy metal that is used in various industries and has adverse effects on both human health and the environment. In this respect its determination with sensitive and economic analytical methods is of great importance. Materials and Methods: In this research, a novel ion selective electrode based on perphenazine as an ionophore was developed for deter...
متن کاملDisposable single-use electrochemical sensor: A novel hollow fiber based tool for environmental monitoring of cadmium
The objective of this study is to design a simple, fast, sensitive and single-use electrode with the simultaneous capability of preconcentration and measuring, for application in a three-electrode voltammetry system to identify and measure the heavy metal cadmium. The design process of this sensor consists of several stages. The polyurethane foam and multi walled carbon nanotubes nanoparticles ...
متن کاملGraphene Oxide/Polyaniline-Based Multi Nano Sensor for Simultaneous Detection of Carbon Dioxide, Methane, Ethanol and Ammonia Gases
In this study, a multi nanosensor was fabricated for the simultaneous detection of carbon dioxide, methane, ethanol, and ammonia gases, and its electrochemical response to various concentrations of these gases were investigated. In order to fabricate this multi nanosensor, in the first phase, the Graphene-Oxide/Polyaniline (GO/PANI) nanocomposite was synthesized. Chemical ...
متن کاملHigh Sensitive Gas Microsensors Based on Sulfonated Cnts and Cnts/polyaniline Mixture
A sensor is defined as a device which detects a variable quantity, usually a non-electric stimulus and converts it into electrical signals that are recorded. Measurement performances are defined by the sensitivity, selectivity, accuracy and stability characteristics of the sensor. Because of their high degree of selectivity and sensitivity, electrochemical sensors represent a very promising ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015